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Abstract

We present a model for Synthetic Aperture Radar imaging of the ocean surface. In'

constructing the model we attempt to avoid making assumptions about the relative

importance of various imaging mechanisms. We apply' the model .to three issues, the

focus setting, the asymmetry in the images obtained with opposite airplane flight direc-

tions, and the azimuthal image shift of features on range directed waves. We-show that

the focus setting depends on a combination of the velocity of the pattern being imaged

and on the velocity of the Bragg scatterers, The focus setting does not depend

significantly on the imaging mechanism, that is velocity bunching, modulation of Bragg

waves, and so on. Comparisons of our model predictions are made with the TOWARD

results. We-obtain a simple analytic prediction ofithe complete curve of the observed

energy in swell versus the focus setting. We predict that, the maximum of this curve

occurs at one-half of the phase ,speed of the swell for azimuthally traveling swell and we'-

provide a simple explanation,of this result. We.-siateFe asymmetry in the visibility 7;_

of the swell obtained by flying with or against the long wavesi The asymmetry arises

from competition between velocity bunching and hydrodynamic modulations.

In a companion paper we present a detailed analysis of the TOWARD data.
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Imaging of Ocean Waves by SAR

1. Introduction

Synthetic Aperture Radar images of long-wavelength features on the ocean surface
are obtainable from both airplanes and satellites. Some of the mechanisms which contri-
bute to the image formation are well established. On the other hand, there is controversy
about the details of the effects of the time dependence of the ocean surface on the imag-
ing process. In this article we present a model which attempts to avoid making assump-
tions about the relative importance of various aspects of the process so that the model can
resolve some of the controversy. The model is applied to three issues, the focus setting,
the asymmetry in the images obtained with opposite airplane directions, and the azimu-
thal image shift of features on range-directed waves. Comparison is made with other
models which have been presented in the literature to see where the underlying physical
assumptions have led to divergent points of view.

The imaging of ocean features via SAR differs from that of land imaging in a
number of respects. SAR relies on the temporal variation of phase information in order
to resolve the azimuthal dimension. Because the ocean surface is in non-uniform motion
the resulting phase changes disturb the image. The actual scattering is often dominated
by Bragg scattering, and if, as often happens the Bragg waves lose phase coherence in a
time less than the look time, then the azimuthal resolution is degraded. The motion of
the Bragg waves due to their own phase velocity and to advection by larger waves leads
to an incorrect location on the image. The fact that the advecting velocities vary from
one part of the ocean to another leads to a smearing of the image.

Another problem is involved when some rapidly moving feature of the ocean is
imaged. The simplest example, studied in TOWARD, occurs when a nearly mono-
chromatic swell is present which is traveling in the azimuthal direction. The phase velo-
city of the swell is on the order of 10-20 meters per second while advecting velocities of
the scatterers due to orbital motion are less than one m/sec. The intensity of scattering
from different regions of the ocean surface as observed in the output of the SAR proces-
sor is correlated with the phase of the swell. As the swell moves the magnitude of
scattering from a small scattering region has a dominant space-time dependence which is

a function of X-vot where X is the azimuthal coordinate, v, is the phase velocity of the

swell and t is time. This also would be true of a solid body, moving with vo. However,
the phase of the radar return from a small patch of ocean does not have this dependence,
whereas for a solid body it would. The velocities important for phase changes are the
advectng velocities and the phase velocities of the Bragg waves. In order to understand
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SAR imaging of the ocean it is important to understand this difference in the phase and

amplitude behavior between solid patterns and ocean patterns. The origin of one of the

controversies mentioned above is based in how to properly treat the various velocities.

Our most significant and surprising result is for the optimal focus setting for azimu-

thally directed long waves. For a stationary scene, standard SAR theory shows that the

optimum focus setting is proportional to the square of the velocity of the airplane (or

satellite). For a moving, but solid, scene, clearly one should use the square of the relative

velocity, v, - vx , between the airplane (moving in the x direction at velocity v.) and the

scene (moving at azimuthal velocity v,). For ocean waves, however, there are several

relevant azimuthal velocities associated with the scene. These are the phase velocity, v0,

of the long waves being imaged, the phase velocity, uo, of the shorter Bragg scattering

waves responsible for the radar reflection, and the current velocity, u,, (which could be

the orbital velocity of the long wave) which advects the short waves. One school of

thought [Jain (1978, 1981)] predicts that ( v. - vo ) 2 should be used for the focus setting,

while another [Alpers and Rufenach (1979)] predicts that (va - u, ) 2 should be used.

Jain and Shemdin (1983) have presented data indicating evidence for a velocity larger

than uc . Harger [1986] considers the case of an ensemble of Bragg waves entirely in the

range direction riding on a long wave, for which the correct focus setting is also

(v, - V ) 2. Our model makes the rather surprising prediction that both the pattern velo-

city and the velocity of the Bragg scatterers are important but that they contribute to dif-

ferent aspects of the SAR imaging process. The correct optimum focus setting involves

(v a -v6) (Va -u c ) =[Va - (vo+u )/2 12. Since constructing our model we have

discovered that Ivanov (1982, 1983), Rotherham (1983) and Ouchi (1983b) have also

predicted (va - v/2) 2 . Our result differs from theirs only in that it is explicitly

independent of which reference frame is used for measuring velocities. We also show

that this result is implicitly contained in the method of simulation proposed by Plant and

Keller (1983).

We predict an asymmetry in the image contrast obtained flying with or against the

long waves due to the interaction of the velocity bunching mechanism of imaging and the

hydrodynamic and tilt-modulation mechanisms. Using preliminary data from the Univ.

of Kansas component [Moore, et al. (1986)] of the TOWARD experiment [Shemdin, et

al. (1986)] we make estimates of the sign of this asymmetry.

We also make comments on some aspects of imaging when the long waves are trav-

eling in the range direction. These aspects might be tested using long narrow slicks on

range directed waves.

467.textl 7-14-'88
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Our model is presented in Section 2 for the general case. In Section 3 we treat the

special case of a single long wave pattern. Section 4 compares other models. Section 5
deals with image contrast while flying with or against the wave propagation direction and

Section 6 contains comments about various other long wave orientations and the more

realistic case of the presence of several long waves. Appendices, A, B, C and D discuss

simplified models to illustrate the imaging mechanisms. Appendix C in particular

discusses the model discussed by Harger [19851, and shows that although his analysis is

correct, his model treats an exceptional case. Appendix D is a discussion of decorrela-

tion times for Bragg waves and the corresponding image degradation. In a companion

paper, "Comparison of Computed SAR Focus-Setting Curves with Model predictions,"

DeWitt et al., [1988] we present a detailed comparison of our model with the TOWARD

experiment.

2. The Model

A. General Assumptions

Our model is based on a standard application of the SAR theory to the ocean surface

which is thought of as having two scales. The short waves (% - 0.25m for L-band) are

responsible for the backscattering of the radar waves by way of the Bragg scattering

mechanism. The long waves ( X - 140m for the TOWARD experiment) are responsible

for modulating the short waves in such a way as to produce an image of the long waves.

Long waves of intermediate size ( X - 20m) may also play an important role in limiting

the coherence time of the short waves through differential advection, for example, and

thus may influence the effective length of the synthesized aperture. We treat the coher-

ence time phenomenologically, but have also estimated it in Appendix D.

One modification to the standard SAR integrals which we have found helpful for

analytic work is the use of a Gaussian shape for the resolution functions and time filter

functions instead of the square windows usually employed. This change should not have

a significant effect on the qualitative results, although it does introduce an ambiguity in

comparing values of parameters such as the width of the time filter function to those used

in specific experiments.

A central assumption of our model is that speckle in the image is relatively unim-

portant. We calculate the intensity of the image, which is the image amplitude squared.

We assume that the product a a of the radar scattering amplitude and its conjugate (at

the same time but different positions) can be replaced by its average over an ensemble of

possible Bragg waves. (A model for the product at non-equal times is introduced in the

next section in terms of that at equal times.) The Fourier transform of this product with

respect to the position difference gives a spectrum, which depends on wave number K,
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average position R, and time T. The R and T dependence reflect modulation by long

waves. We assume this spectrum to be a smooth function of all three variaFes.

Although we assume the spectrum to be smooth in K, we do not assume, at present, any-

thing else about the K dependence and how it is modulated by the long wave, except that

if only one long wave (with phase velocity vo) is present, the modulation is a periodic

function of R -V0 T.

B. Detailed Formulae

A model for the imaging of the ocean surface by the SAR process must deal with

the reflectivity of the surface to radar waves and with the effect that the time dependence

of the ocean has on the SAR processing. The reflectivity is generally believed to be ade-

quately described by a two-scale model which says that the locally reradiated elec-

tromagnetic field is proportional to the incident field times an obliquity factor such as the

cosine of the angle of incidence, 8, to the locally smooth (on the scale of the radar

wavelength) surface. For an ocean surface described by the time-dpendent height,

h (x,y, t ),of the water relative to a horizontal x,y plane, the two scale model is

h (x,y,t) =A (x,y,t) +a (x,y,t) (1)

where A and a are the contributions to the wave height from long wavelength and short

wavelengths respectively. The locally smooth surface is then defined by A (x, y, t ) and

the angle of incidence varies with position and time as

cos8d(area)= cos8o+ Lsin58 dx dy (2)

for a beam directed in the y - z plane at angle 8o from vertical. The factor aA /y pro-

vides a tilt modulation of the reflectivity and is one of the ways in which the ocean might

be imaged. For vertical radar polarizations there are important corrections to this simple

obliquity factor, but it is probably adequate for the horizontal radar polarization and

some aspects of the modeling do not depend on the exact form used.

The other ways in which the radar return is influenced by the ocean surface are

through the phase difference induced by the varying path lengths to different parts of the

surface. The geometry of SAR is illustrated in Figure 1 where the distance, R, from the

airplane (or other radar platform) located at (x,y, z ) = (va t, O, ho) to the ocean surface

located at (x,y,z) = [x,y,h (x,y,t) is given by

R = 2+ [ho-h(x,y,t)] 2 + (x -vat)2}

E R0 + (y -yo)sin5o-h (x,y,t) cos 8
0 + (X-vat)2  (3)

2R 0
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Figure 1. Geometry of SAR.
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for points labeled by (x,y) near the point (xo,yo). The radar pulse returns to the plat-

form with a phase delay which is given by

O-kr (2R) (2t/X) 2R (4)

where X is the radar wavelength. The modulation of this phase by the surface height

h (x, y, t ) provides the other mechanisms for imaging the surface.

In the two-scale model the part of the phase factor, e i , coming from the short

waves can be expanded as a power series in kr a, i.e.,

exp[-2ik cos Soa (x,y,t)Ix E I -2ikr cos Soa (x,y,t) (5)

The signal received at the platform and assigned to the nominal range distance Yo is

an integral of the field over the x, y resolution of the radar beam

sig (Yo,t) =JjdxdyResy (y -yo)Res(x -vt) e 2iRexp[2iksin8o(y -Yo)I
[ (x -vet )21

exp[-2ikcosBOA (x,y,t) exp ikr J- F (x,yt) (6)

where

F (x, y,) = [1-2ik, cos 50 a (xy,) cos So + - sin . (7)

This expression for the single pulse radar return depends upon the range resolution func-

tion Resy (y -Yo), the width of which may be determined by the duration of the pulse or

it may be narrowed by the use of the "chirping" technique. In either case it is normally

many radar wavelengths (- 45 for TOWARD) wide. The azimuthal resolution function

Res. (x - va t ) is determined by the antenna size and for SAR is typically quite wide

(several thousand radar wavelengths). The integration over x and y essentially picks out

the part of the factor F (x,y,t) which has the wave number ky E- 2k sin 0 and k -E 0

corresponding to Bragg scattering from the little waves. These Bragg waves, however,

are modulated by the large waves through both the obliquity factor and the heaving factor

exp [ -2ik, cos S0 A (x, y, t ) 1 (8)

as well as by the hydrodynamic interaction of the big waves with the little waves. The

hydrodynamics enter as variations in the size of the amplitude a (x, y , t ) of the Bragg

waves in different regions of the ocean surface.

The time dependence of the surface height h =A + a becomes important when the

single pulse radar returns of (6) for various times are combined by the SAR processor to

improve the azimuthal resolution. The idea is to use the quadratic time dependence of

467.textl 7-14-'8



-7-

the phase as a "lens" to focus on particular values of x. The procedure is to multiply (6)

by

exp[ (_rvfIv a ) 2 Res t (xO-vat) (9)

and sum over a large number of pulses (labeled by t) for each desired value of x o. The

factor (1 - Vf /va ) 2 is a focus setting correction to remove any defocusing caused by

quadratic time dependent phases generated by the time dependence of the ocean surface.

The phase term involving x 0 steers the focusing onto different points of stationary phase

in the t sum. When the radar pulse repetition rate is large the sum over the pulses can be

replaced by an integral with some resolution window Rest (x 0 - va t ) which determines

how many pulses are used to reconstruct the final image to be associated with the point

(xo,y 0 ). The resulting triple integral overx,y, t would be a large but finite problem, if

A (x, y, ) and a (x,y,t) were known, but since they are not, they must be modeled.

For special time dependences the t integral can be done. These special cases usu-

ally involve constant velocity or constant acceleration of a patch of the ocean. For exam-

ple, if A and a are functions of x - v. t and y only, then a change of variable from x to

z = x - vX t leaves all the time dependence of (6) in the factor

Res. [z - ( -vX ) t I exp ikr[z-(va - (10)

so it is readily seen that the proper focus is

vf = vX  ( 1)

If A and a are functions of x and y - vy t only, a different change of variable from y to

z'=y -vy t is equivalent to changing x 0 to x 0 + (R 0 /v a ) vysin 0 producing a (large)

velocity shift in the x -direction due to motion of the scattering object in the radial direc-

tion, and no focus correction. (Combinations of the two effects can occur with no compli-

cations.) The ocean surface, however, does not have a single velocity and the phase velo-

city vo appropriate for the large wave, A, is not the same as the velocities characteristic

of the small wave, a. A single change of variables is not sufficient.

Our model attempts to get around the problem of several velocities by treating the

little waves (which may have short correlation times) statistically. This is accomplished

by squaring the triple integral for the processed image field and using instead of the vari-

ables xy, t, x ',y ', t' the average and difference variables

467.I Ie 7-14-8
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X = 8x =x -x'
2

Y = Y+Y' 8y =y -y"

T = r ,t st =r -t'. (12)
2

It is extremely convenient to use Gaussian functions for the resolution functions in
analytical calculations even though the actual apparatus may not use a Gaussian window.
The final details may not be exactly correct but the qualitative features should be. The

advantage is that Res. (x ) Res. (x')=Res' (4 -X) Res. (Sx i42) and that various

integrals can be done analytically.

We obtain

Image = I Sig (x 0 ,Y 0 ) 12= I Jdxdy d Res, (y -yo) Resx (x -va ) Res, (xo-va )

exp[2ik sinS 0 (y -yo)] exp[-2ikr cosBOA (x,y,t ) I

F (x,y,t) exp{ [ (X-Vat )2(xovat)2 (1-vf/Va)2 ] 2
Ro

=JdXdYdTd&8 d8y d& t Resy [2 (Y-yo) I Resy (Syr)

Res. [ ' 1 -(X --v. T) IR es.,

Res, )2(xo0- Va T) Res, ( --]2

exp(2ik, sin8 0 By ) exp {2ik, cos8 0[A (x',y',t') -A (x,y,t) }

exp--2--0 (X-va T) (&x -va ) +Xov a 8t (l-vf/va )2 (va -vf 2 Ta

F(x,y,t ) F" (x',y',t') (13

Anticipating that the time integrals produce t narrow resolution in the x integration

(-1 lm for TOWARD) we can use the fact that the long wave amplitudes are slowly vary-

ing on the resolution scale and expand about the average coordinates X,Y,T obtaining

467.L-wul 7-14-'88
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A (x',y',t')-A (x,y,t) = -- 2A(X,Y,T)5t -;A (XY,T) --T (14)
DT

plus cubic terms. The rapidly varying factor F can be analyzed as

F(x,y,t ) F* (x',y',t')=a (x,y,t ) a (x',y',t')G (x,yt,x',y',t') (15)

where G is a slowly varying factor describing changes in the obliquity factor due to tilt-

ing of the surface by the long waves.

The small waves are probably correlated over moderately short distances and times,
and are modulated by the big waves over longer times. First consider the equal-time pro-

duct

a (x,y,T) a *(x,y ,T fK . (16)
2

In the present treatment we wish to ignore speckle and hence replace aa by an ensem-

ble average. In this case Sp (R, T,K ) is the local spectrum of the little waves and is
assumed to be a smooth function of its arguments.

For the case of slowly varying Sp (R ,T,K ) we can treat the non-equal time case
by neglecting momentarily the R dependence in which case the e factor in (16)

should go with a time dependence e - i a t where

(OK =+(k) + (uK (17)

are the frequencies of Bragg waves of wave number K in the advecting current Ui? (R, T)
which is, of course, modulated by the long waves. The two sign choices correspond to

the two directions of propagation for each K. The intrinsic frequency aK may also be

modulated by the long waves by changing the effective gravity felt by the little waves.

For a more complete discussion of the interaction of short waves with long waves, see

Henyey et al., 1988. Damping, wind, and modulation by intermediate size waves should

lead to a decorrelation of these Bragg waves. We treat this phenomenologically through

a function

D (t -t') =e (18)

where tc is a measure of the decorrelation time. Using (17) for both e ik-r- and e il? ' -

leads to

a (x,y,t ) a* (x',y',t') fJd2 K eik-('-i") e-ic (RT) (t -r')

Sp (R,,K ) D (t - ) (19)

467.tcxtl 7-14-'8
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at least for small t - t'. The presence of a decorrelation time makes the expansions in the

time difference, 8t, [as in Eq. (14) for example] more justified than similar expansions in

the average time variable, T, would be since T is limited only by the look time which

may be longer than the decorrelation time. We will return to this point in Section 4.

Returning to our complete expression (13) for the final SAR image we see that the

Sx and 8y integrals can be performed in this approximation as Fourier transforms of the

Gaussian resolution functions Res. and Res, with arguments

2krcos 50 (R, T ) + 2k, +K

and

2kr sin80 -2k, cos 05() (R ,T) +Ky (20)

respectively. For sufficiently wide resolution functions in Sx and 5y these Fourier

transforms are essentially 8-functions of their arguments. They tell us which Bragg

waves are picked out by the SAR including the usual result

I? = (0,-2kr sinS 0 ) (21)

plus the corrections due to VA, the tilting of the surface by the long waves, and also the

small rotation of the beam as the airplane passes a particular portion of the ocean. Treat-

ing these as 8-functions allows the d 2K integrals to be done. The 8t integral is now the

Fourier transform

R, () =fd 8t Rest[--J D (St ) eiL08 t  (22)

with argument
DA

.c + 2k, sin 80 uY - 2k, cos So VA • -2k, cosSo iJ0

2kr  X -vaT
+ R--a[o(l-2vf/v ) -X+2vf T]+2krux RO (23)

The first four terms of w can be recognized as 2krvalR0 times the usual velocity shift of

X0:

Xo->o 1- +X'Jh =x o 1 L I I _-cot Souz ± 9ks
Va Va

(24)
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and we have dropped terms of order (Vf//va ) 2. The last term in (23) is a time dependent

velocity shift caused by the fact that in the presence of advection the frequency of the

Bragg waves being sampled by the radar beam is different depending on whether the

patch of ocean is slightly ahead or slightly behind the point directly beside the antenna.

This term is usually omitted as being small but the R o/Va factor in the velocity shift

gives it more significance than initially meets the eye.

Collecting the result of doing the &x, Sy, K and 8t integrals leaves us with

Image(x 0 ,Y0 ) =f dXdYd T Resy [2 (Y -yo) ] Resx [42(X-vaT) 

Res, ['r2 ( xO- v. T)S -,TK1B)G _

(25)

where o) can be written as

a)-=-2kR xO (-2vfva)+ XXsh -XX++22v] T (26)

The expression (25) is the general form for our model. It requires, as input, expressions

for the Bragg wave spectrum, Sp, the tilt factor, G, the velocity shift, Xsh, and the

advecting current, u,, as functions of the long wave variables.

We note that when the Bragg coherence time, r,,, is much less than the look time

interval, our result (25) is very similar to a multilook analysis in that it is an incoherent

sum over average time, T, of signals coherent over a short (order c ) -cative time at. In

this case, a single look SAR image will differ from a multi-look image only in the

amount of speckle. Resolution would be limited by the correlation time, not the look

time. Since our expression has averaged over the speckle, it is applicable to either single

look or multilook if the time resolution function Rest [42 (x 0 - va T)] is interpreted as a

sum over looks of the resolution function for each look.

467.textl 7-14-'U



-12-

3. A Single Long Wave

To analyze expression (25) any further analytically, a form must be chosen for the

R and T dependence of the various quantities. A form which would be appropriate to

situations such as the TOWARD experiment has only one long wave present, traveling

with phase velocity VO. Then the time dependence of Sp , G , A , 0 k and iU can be elim-

inated by changing variables from R to R'= R - VoT. This change of variables is often

made; however we have only used it for the average variables, ( 7 + r') /2, characteristic

of the long waves and not for the difference variables, F"- 7', which are dominated by

the short waves and have a different time dependence; that characteristic of their own

phase velocity, oK/K.

An alternative change of variables, applicable only to a one-dimensional wave (no

dependence on the coordinate parallel to the crest) is

Y,=Y

and

X'=X T (27)
cosO

where 0 is the angle between the wave velocity vector and the azimuthal direction. We

present below the formula for either of these cases by letting R' =R-V'.T with

V'=Vo for the first case mentioned and V'O= (vo/cos e,O) for the one-dimensional

case.

With the new variables R" replacing R, equation (25) becomes

Image(x 0 ,y0 ) =fdX'dY'd TResy [ 42(Y'+v'OyT -yo) ]Res, [ (2(X'+v',,T - v.T) ]

Res 1 42(Xv T) T Sp (i, 0,KB)G )t (28)

with

S2kR va +Xsh v,,-2vf)T+u.V +(vO-v.)T

R0  XOI Va va

(29)

Using Gaussian resolution functions it is now possible to carry out the T integral expli-

citly although the results are sufficiently messy that only the two special cases (1) v0Y = 0

and (2) vu = 0 will be shown below.

467.tet2 7-14-'U
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Case 1. One-dimensional long waves or azimuthally directed long wave patterns,

voy = 0. In this case the Y' ( = Y ) resolution is entirely controlled by the original y

resolution function Resy Ii ( Y - yo)]. On the other hand, the X' resolution is

expected to be dominated by the result of the T integral.

Let us introduce a change of the variable from T to T' where

va T'= vaT-x 0  (30)

and define the SAR resolution Axo by

Ax o = (31)
2kr vaA TS

where the effective look time AT, is given by 1 / ATs = I /AT 2 + 1 /r 2 and AT is the

nominal look time. In terms of these variables we obtain

1
AxoAT s

_1 uu x 0  vU

I Va I Ivf ) v (32)

[x0 XxATs +Xh -X'-T'(vo +u, -2v) (32)

neglecting terms of relative order u, / va with x'oaxo( 1-v /v ). The integral to be

done is then

af T'

exp -{ 2 + X'X 0 -(a-vem )T' 12 + x'o+XA- XT(vu +u, -2vf)j2
__7 2  A~ 2

(33)

where Ax is the width parameter in the Gaussian function

x
2

Res (x) 
e

Ax ( 2nt ) 1/2

and va A T is the corresponding parameter in Res, ( va t), i.e. A T is the look time. For

the case where the beam width Ax is much larger than the distance covered in the

integration time, i.e.,

467.texL2 7-14-'88
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AX > > VaAT (34)

the second term in the exponent can be neglected and the result is

r -(x+Xs _ .X')2 ]
exp 2 +(2vf-v -ux' 2 AT 2

1/1 = (35)
0+ ( -2v f+ v ,-+u )2A T2 '

The interpretation of this result is that the image is shifted from X' to X' -Xh and is

blurred by the intrinsic SAR resolution size Axo and the defocusing factor

(- 2vf + vex + ux ) A T. The defocusing can be removed by choosing

v + X, (36)

2

Comparing this to the formula (11) shows that the effective velocity is the average of the

azimuthal components of the phase velocity of the large waves and the advective velocity

of the small waves. Since, in practice, u. is a function of which part of the long wave is

being imaged and averages zero in the frame of the average current, the globally best set-
ting corresponds to I/2 the phase velocity of the long waves in that frame. This result has

also been reported by lvanov (1982, 1983), Ouchi (1983), and Rotherham (1983) whose

models are similar to ours.

In the multi-look case (35) is changed only by being a sum over terms with x0

replaced by x0 - (vo + u - 2 vf ) T,, with T, being the center time of the n:h look.

Thus different looks will only be aligned if vf = (v# + u,,)/2 and will cause further

defocusing otherwise.

The reason for this unexpected result is that there are two aspects of the defocusing

of a SAR image by the velocity of the object. The first is the fact that the object being

imaged has itself moved a distance vAT during the time AT it was being looked at.

This blurring would occur in ordinary optical photography if several pictures were super-

imposed. The second aspect, unique to the coherence of the SAR picture process, is

caused by the time-dependent velocity shift generated by the small, but time-changing,

angle between the azimuthal velocity of the object and the necessarily rotating direction

of the part of the radar beam which strikes it. The total change in this velocity shift in a

time AT is also vAT giving a solid object a blurring distance of 2vA T. For the ocean

surface, the long wave phase velocity is responsible for the motion of the object (the long

wave) being imaged. However, the coherent phase changes responsible for the time-
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dependent velocity shift are provided by the short waves. The total blurring distance is

then v,,AT + u.,AT which is the same as for a solid object moving at v = (vu + u" )/2.

In Appendices A, B and C we elaborate on this idea for simplified cases.

The defocusing effect on the energy spectrum of the long waves in the image is

easily computed with the Gaussian resolution functions independent of the details of the

modulation mechanism. In the expression (25) for the signal the T integral has been

done (35) resulting in the convolution form

(X'o-X") 2  (yo-y)

Image (xo,y 0 ) 2Ax8 Ay e e Sp ( k"OK)G(RIO)

(37)

where X"=X'-Xh(X') is a nonlinear function of X' and Ax20=Ax 2

+ ( - 2vf+ v' + ux ) 2A T 2 . The dependence on focus setting, however, is entirely con-

tained in Ax, so the x0 Fourier transform of Image(x 0 ,y 0 ) can be easily carried out

(u. can be neglected for typical cases).

_k AX2 (yo- Y')1

f (k oyo)=e fe °(x'xd)sp (=R',O,KB) G (R',O)e dX','.

(38)

Thus, independent of the form of Sp and G and the velocity bunching mechanism in

Xsh (X'), the focus setting dependence is given by

If(ko,Sv )I 2 =C(ko) exp[ 2k 2AT 2( Vf -vox /2)2] (39)

Notice that the formula predicts the dependence on focus setting to depend only on well

known parameters. In particular the shape of the curve does not depend on the correla-

tion time t. Of course the normalization does depend on xc, but we make no attempt to

fit C (k 0). Models that predict optimum focus settings also generally predict focus set-

ting curves and it is a better test of the model to compare the entire curve with data. We

will compare equation (39) with the experimental results in the TOWARD interim report

(Shemdin et. al., (1986)]. The SAR look time in that experiment was 1.74 sec, so we

choose AT = 1.74sec/V6=0.71 sec, to give the same <t2> as a square window of total

width 1.74 sec. The waves analyzed had a 140m wavelength, so k 0 =2n/l40m and a
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phase velocity vx = 15m Is. The airspeed was v. = 225m Is. The comparison of equa-

tion (39) using these parameters and the experimental results is shown in Figure 2. The
fit seems quite reasonable. The shape of the time window, Rest (x0 - vat ), has very lit-

tle effect on the curve of Figure 2. For a square window of total width, 46A T, the Gaus-

sian function in (39) is replaced by sinc 2 [ k 01 6A T ( 6v - vo /2 ) ] which differs very lit-

tle from (39) in the range plotted. The sinc2 factor is also obtained by Ouchi (1982). A
detailed analysis of the TOWARD data is presented in the companion paper, [DeWitt et

al., 19881.

Equation (39) shows that harmonics of the basic 140m wave will be much more

sensitive to v/ [see also Ouchi (1983a)]. The magnitude of these harmonics at our

optimum focus setting will also be reduced by the intrinsic SAR resolution through the

exp [ -k2 Ax2 /41 factor in (38). The simplest model of the relative size of the 70m sig-
nal induced by the velocity bunching mechanism has Sp and G as constants in which

case the integral in (38) can be done and is proportional to J (nQ) where

Q =k2vohoRocosSo/Va and k0 =nk1 . In this case the 70m signal should be
exp(-3k A2/4) [J 2 (2Q )/JI(Q ) 2 0.35 smaller than the 140m signal, assum-
ing a decorrelation time, 'c, of about 0. lsec as estimated in Appendix D. The data of

Shemdin et al. (1936) shows a peak of about this size but it is found at a wavelength of
80 meters instead of 70 meters.

Case 2. Range directed long wave patterns, vo, = 0. In this case the result of the T
integral is to produce a narrow resolution along some band in the X' - Y' plane which is

not necessarily perpendicular to the X'- axis as it was in case (1). The best resolution is
again obtained by choosing the coefficient of T 2 in the exponential to be as small as pos-
sible. Thus the best focus setting is vf =0 as was expected since there are no velocities

in the x -direction other than that of the airplane. With vf = 0 the resolution function is

exp - exp [yXx+Xv)1-} [- )] (40)

showing the extra defocusing in the y-direction due to the motion of the scene and the
velocity shift in the x -direction due to motion in the y -direction. In the multi-look case,

expression (40) is replaced by a sum over looks with Y0 replaced by Y0 - voy T,, where T

is the time at the center of the nth look. Thus successive looks will not be lined up and

further blurring will occur unless successive looks are shifted by voy (T, + 1 - T, ) in the

y -direction before being added together.
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Figure 2. The energy at 140m in the spectrum of the image as a function of the
focus setting of the SAR processor in units of the assumed velocity of the
scene. The wave phase velocity is I5m/sec. The total look time is
46AT = 1.74 sec. The dots are the data from page VI- 18 of Shemdin, et
al. (1986) renormalized arbitrarily and the smooth curve is our expression

(39).
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The interpretation of this resolution function is easily seen by considering the case

of a long narrow slick extending in a straight line in the range direction. The range-

dependent velocity shift of the azimuthal image position would cause the image to have a

sinusoidally-shaped slick (x0 = constant x cos k oY 0).

The resolution of this slick would be poorer in those regions where Xsh (Y') is

changing most rapidly as a function of Y'. One could interpret this Yo variation of the

resolution as a straightforward smearing in the x0 direction because of the averaging over

Y'. Quantitatively

2 dX h  2Axf -Ax0+ ( Ay 2 + vAT2 ) (41)

for the approximation Xsh(Y')=Xs3 (y 0)+(Y'-y 0 )dXsh(yo)/dY. On the other

hand, an alternative interpretation of this formula can be made in terms of coherence

times.

The idea is that the long wave strains the Bragg wave and changes its wave vector.

If the wave vector is changed enough to remove it from the Bragg resonance condition,

coherence is lost. The condition that the wave vector has changed is that A k A y - it,
whee Ay is the resolution cell size in the y direction. In order to see the relationship

between the two interpretations we substitute definitions (31) for AX 0 and (24) for Xsh to

obtain

___ I r Ura4 12
T2effx 2vakr AT, + [2k., 0 y+ 2 T' (42)

The second term in brackets will be reinterpreted to be the time c, for the straining to

occur. The straining of the Bragg wave by a current is given by

a( k -- -2k sin0-o = 2kr (43)
---- -7k kBWL k- --l(43)

which for our geometry is

Aky = k , 2ura (44)-;=-kB-y--2=-2ky , (4
ata)7 t ay

and we will take A k = t/Ay. The time s to strain the Bragg wave number out of reso-

nance with the radar is thus given by

1 y Vu 4B (45)
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This strain is responsible for shortening of the effective coherence time and results in a
broadening of the resolution, AXeff. Note that this formula has implicitly assumed that

V iU is effectively constant over A y so that it is only true for long waves. The more
important decorrelation effect due to intermediate sized waves is discussed in Appendix

D.
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4. Comparison with Other Models

In reviewing the literature to compare our model with other results we notice that

the optimum focus setting results from a very subtle interplay between a number of small

quantities, each of which may look negligibly small at various stages of the computation.

Specifically, the frequency of the long wave is very small on the scale of the look time

and the wavelength is very long on the scale of the resolution cell. However, the phase

velocity of the long wave is the largest velocity on the ocean's surface and can easily be

overlooked if thought of as frequency and wavelength.

In particular, when the coherence time is smaller than the look time it may be

justified to neglect small frequencies when multiplied by coherence time but not justified

to neglect these small frequencies when multiplied by the look time (i.e., in the

incoherent sum). In Appendix D we make an estimate of the coherence time, Ty, and find

values of about 0.1 sec for wind speeds of -3m/sec. This is much smaller than the total

look time for a multi-look SAR processor. Power series in 8t are more justifiable than

power series in T.

A second complication is that the best SAR image is not necessarily a good image

of the small patches of the surface which do the scattering. The image of each patch of

Bragg waves may be deliberately blurred in order to achieve a good image of the moving

long wave. As an example of such a case we present in Appendix B a model of

incoherent stationary scatterers whose radar reflectivity is modulated in time to

correspond to a moving wave of reflectivity. The best focus for the wave is found for

v, ( va - vo ) = ( va - vo / 2 ) 2 although the individual scatterers do not move at all. This

model is also mentioned in Ivanov (1982). In the same spirit of sacrificing imaging of a

patch of Bragg waves in favor of imaging the wave, we note that while the patch may be

accelerating, and thus subject to blurring by way of a changing velocity shift, there is no

acceleration defocusing of the image of the long wave (although there is acceleration

defocusing of the image of any particular patch of Bragg waves) because at any given

point on the long wave each patch moving past that point has the same velocity and thus

a constant velocity shift.

Plant and Keller (1983) have proposed a method of simulating a SAR image by

using data from a stationary two-scale radar wave probe. In their method the stationary

radar probe data is analyzed on two time scales. Variations on the shorter time scale are

used to measure the Doppler shift produced by surface motion while both this Doppler

shift and the general intensity of the backscattered signal are functions of time on the

longer time scale. Their procedure, like ours, assumes the auto-correlation time scale is

short compared with the look time of the SAR system. They do not give explicit
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formulae for the general focus setting case but only sketch the changes to be made. The

primary change is to replace the frequency spectrum of the two-scale radar return signal

f(oW)=I Je - wEit)dt 2 by the "chirped" frequency spectrum f((o,Aa)=

Ife-i - iAa t2E t)dt 2 with Aa= 2kvaAv/Ro= 2kVfva/Ro. The "chirping" is

included because an object moving at the speed Av would be expected to give a Doppler

shift which would vary linearly in time because of the relative motion of the object and

the SAR platform. The Aa term shows up in formulae (8) and (17) of Plant and Keller as

an extra factor e iA a (2tc +r ') inside the r and T integrals.

To determine the optimum value of Aa we must look at how the stationary data are
used to generate a SAR simulation. Since the stationary probe makes measurements at

one position x. as a function of time t., while the SAR measurement uses information
from many positions x as a function of time r the method of Plant and Keller assumes

that only a few long waves are present so that stationary probe data at time tp can be used
at position x and time t such thatx -vot =xxp -v.tp. When there is only one long wave
present the time average (over the look time) in Equation 17 of Plant and Keller can be
done by changing variables from x and t to x "=x -vbt and t with the result that the

only : dependence remaining is in the exponential factor

exp[2 i t TA a I exp 2 oikrvav5t] (46)

which is to be averaged over the look time. The largest value for the average is obtained

by choosing Aa =k,vvIRo or equivalently by choosing the velocity shift Av=vo/2.

They did not discuss this point in their article.

Ouchi (1982, 1983a,b 1985) and Ivanov (1982) have constructed models of SAR
imaging which are very similar to ours and also reach the conclusion that Av = v0 /2, con-

sistent with our result Av = (vo + u.) /2 when u, is negligible. Our result has the

pedagogical advantage that it gives consistent answers in all reference frames. Harger
(1985) has also discussed the imaging of ocean waves. We briefly treat his model in

Appendix C.
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5. Direction Dependence of Image Contrast

The SAR image given by expression (37) contains contributions from velocity
bunching, tilt modulation and hydrodynamic modulation. In this section we comment on
the interaction of these effects and in particular on the sign of the velocity shift in the
expression for XM, [Equation (24)1. This shift is positive on the leading side of the wave
crest and negative on the trailing side. For waves moving in the positive x -direction this
tends to enhance the signal interpreted as coming from the troughs and diminish the sig-
nal from the crests. For waves moving in the negative x -direction (i.e., opposite to the
airplane flight direction) the crests are enhanced and the troughs diminished. If the spec-
trum Sp (R. 0 ,KS ) is different in the trough than on the crests there would be an asym-
metry in the visibility of the waves depending on the relative direction of the waves and
the airplane. Although we have not yet made a model for the hydrodynamic modulation
of the spectrum, we can choose the form

-1,

Sp(X -Y-'0,K )G(X ,Y,O)=A(l+bcoskox'+csink o x) (47)

and calculate the asymmetry by computing the integral in (38). Taking the long wave
height as

h = h 0 cos kox (48)

the velocity shift is, from (24),

R ocos 80
Xs" (x + = kovoho sin kox (49)Va

where ± refer to the direction of propagation of the long wave relative to that of the air-
plane. The integrals in (38) can be done in terms of Bessel functions, Jm (Q), with the
result

-k-
f±(ko,y O ) =A 'e -J( Q ) + (J2( ±Q ) +J0 ( Q)

+' -i(J2( ±Q ) ( ±Q (50)2iI

with Q = k 2ov h0 R0 cos 50 / va and the constant A " has absorbed several constant fac-
tors.

The asymmetry obtained by assuming equal values of Axe2 is

If +121 If-I2 -2B

I f+1 2 +1 f-1 2 1+B 2+C 2  (5
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with B =b[J2(Q) + Jo(Q)I/2J1 (Q) and C =c J 2(Q) -Jo(Q)]/2J (Q). The term c in
(47) is out of phase with the other terms and thus diminishes the asymmetry so we set it
equal to zero for the purpose of maximizing the asymmetry. In Figure 3 we plot the
asymmetry given by (51) as a function of b for the case of long waves of wavelength
140m and peak-to-trough amplitude of 1.24m.

We also can try to use the tower based radar probe data of the University of Kansas
group of the TOWARD experiment [Moore et al. (1986)] to predict the asymmetry
expected for the TOWARD SAR data. This stationary probe measures the backscatter
signal strength and the wave height (via the Doppler shift caused by the changing
height). While the data show some sensitivity to radar frequency, look direction, and/or
time of day, the most common situation has the strongest backscatter leading the crest by
about 90' and the weakest backscattering trailing the crest by about 45* . If these
numbers were both 90' we would have b =0 in expression (47) and there would be no
asymmetry. Thus the sign of any asymmetry is sensitive to this phase. The data for the
afternoon of October 31, 1984 show the phase of the radar power modulation transfer
function to be somewhere between 1000 and 1500 at the peak of the wave height spec-
trum. A phase in this range favors the trough over the crest so a stronger image should
be seen for waves moving in the same direction as the airplane. This is consistent with
the preliminary analysis done on the SAR pictures for this date [Shemdin et al. (1986)].
Data for the afternoon of November 4, 1984 are not as complete but show the phase of
the modulation transfer function may have been close to zero under the weather condi-
tions prevailing then. A phase near zero would give stronger wave images for waves
moving opposite to the direction of travel of the airplane. Analysis of SAR pictures for
this date is incomplete [Shemdin et al. (1986)]. The size of the effect cannot be obtained
from the Kansas Report [Moore et al. (1986)] which does not give the absolute normali-
zations for their results.
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Figure 3. The asymmetry in the image's energy spectrum at best focus as a function
of the amount of modulation in the radar reflectance. The asymmetry is
defined as (if +1 2-If 2)(If+f 2 +1f - 2) where +(-) refers to
waves traveling in the same (opposite) direction as the airplane. The radar
reflectance is parameterized as (1 + bcosk0x). The parameters for the
velocity shift were taken to correspond to conditions in the TOWARD
experiment.
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6. Comments on Other Long Wave Patterns

We have already discussed in Section 3 an aspect of imaging which could be tested

by imaging a long narrow slick in the presence of range directed waves. Such a slick
could be laid down deliberately or one could use a natural slick or the turbulent wake of a

range moving ship.

Another configuration which should be tested is that of the focus setting which best
resolves the Kelvin wake of an azimuthally moving ship. In this case, the ship itself

would prefer a focus setting Av = vshi, since both the scatterer and the object to be

imaged move at vshi. On the other hand the wake would be best focused at Av = vhip /2

since the scatterers (the Bragg waves) are slowly moving while the pattern to be imaged
is moving at vsh , . Data for such a case may be present in SAR pictures already taken.

A particularly striking demonstration of this prediction would be to subtract images

processed for two focus stzaings - one optimized for the waves and the other for the ship
wake. By appropriately choosing the relative weighting, the waves could be made to
nearly cancel (a smeared sine wave is a sine wave with a smaller amplitude). What
would be left would be a sharply focussed ship wake surrounded by a negative image of

the same wake smeared out.

For long waves at angle 0 with respect to the azimuthal direction, tests should be
made of the prediction of Ouchi (1982) Av = v./(2 cos 0). This case should also be avail-

able in present data sets.

Finally we note that in the presence of several long waves there will be range

acceleration defocusing of the image of one long wave by the other long waves passing

through it - Bragg wave packets at a given phase along one long wave will not always

have the same velocity shift because of the presence of the other long waves. We hope to

explore numerically the effect of such degradation of images.
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Appendix A: An Example - "Windowed" Scatterers

We give an example of a system with a pattern velocity, showing how the focusing

of SAR images depends on both pattern velocity and scatterer velocity. The purpose of

this example is to attempt to understand our previously obtained result involving the

focus setting. In Figure 4, the airplane is located at xa = v'at, while a "window"

through which scatterers can be seen is at x,, =x 0 + v ,,t, and the scatterers appear in the

window moving with velocity vs. The window represent a "pattern."

The radar will see a given scatterer only for the short time it can appear in the "win-

dow" but because of the motion of the scatterer, the SAR processor will interpret the

scatterer as being located at the velocity shifted position (neglecting the size of the win-

dow).
R

Ximage = (x0 + v w t) - -- V rial (Al)
V a

The radial velocity of the scatterer depends on the relative location of the airplane and

the window.

Vraj vssinO= -I SVat - (XO+Vwt) (A2)

R

Substituting in the expression for vradia, the image is at

Xiwge = (Xo+ vw t)( l - Vs/Va ) + V st

=x 0(l -v s/va) + (v s +v , -v.vw/va )t

Since this is a time dependent position it will be blurred by the motion unless it is reinter-

preted as being focused behind the actual scene by a distance sufficient to give a station-

ary image as viewed from the airplane (see figure 4). Such a stationary point at x 1 would

satisfy
(Vat -X1 ) Vat -Xi&=e

R, R

for all times. From the terms linear in t we get

va va -vs -vw +vsvw/va (va -vw )(va -vs)

R, R Rva

or
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stationary image point

Figure 4. The SAR system on the airplane at x. v. Vt picks up a signal from scatter-
ers moving at speed v, in the window at x,.,, = x0 + v. t and interprets
them as coming from the velocity shifted image point
xi =x,, - (R /v 0 )vrwiiai where vd = - v, sinG. T7his moving image
point at range R can be reinterpreted as a stationary image point located at
range R Iwhere

fa -Xs _Xa Xi

R, R
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2vf = R (va -v. )(va -vi) (v + V)

Va RI v 2  Va

For an ordinary object for which v, = v = v this is the usual velocity focusing shift

R 1 2v

However, we see that it is really made up of 2 parts: one, the v, Doppler shift effect,

depends on the coherence of the scattering. The other, the v w motion of the pattern to be

imaged, is familiar to any photographer trying to point his camera to follow a moving

object by lining up the incoherent images received at each instant by the camera.

The resolution of the window is governed by the incoherent addition of the images

from each scattering appearing in the window for a time r = L/(v , - v w) where L is the

size of the window. The SAR intrinsic resolution will be governed by the smaller of the

time 'r and the look time T. If r is smaller than T, then any value of T will correspond to

a multi-look SAR image.

The analogy to imaging of the ocean is readily apparent. The pattern velocity is the

phase velocity of the long wave. The scatterer velocities are the sum of the Bragg phase

velocity plus the advective velocity. The Bragg waves (at least for X band and probably

for L band radaright ) lose their coherence in a time short compared to the usual SAR

integration time. The window can be thought of as a particular part of the long wave.

This separation of effects also shows why there should be very little effect of

acceleration in the imaging of a single long wave even though acceleration can be impor-

tant for solid objects. The "pattern ('window')" velocity which corresponds to the

phase velocity of the long wave being imaged is constant for a single wave and nearly

constant for a wave packet. The individual packet of small waves which actually does

the coherent scattering is only viewed for a short time and so its velocity does not have

time to change appreciably. Different scatterers might have different velocities as they

appear in the window but since the "window" is to be taken to be a particular section of

the long wave, the various Bragg waves appearing on this section should be quite similar

since they are subject to the same advective currents.
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Appendix B: A wave of reflectivity in incoherent stationary scatterers

Consider the SAR signal from a collection of stationary scatterers for which the

magnitude of the scattering depends on cos(Kx - ft), where x is the position of the

scatterer, but there is no corresponding space-time pattern for the phases. The phase of

an individual scatterer is assumed to vary slowly with a decorrelation time T,, and also to

have no correlation with the phases of other scatterers. This model illustrates some of the

features of scattering from the ocean surface where swell is present. There the intensity

pattern moves with the phase velocity of the swell and the individual scatterers (Bragg

waves) behave as independent scatterers with no phase correlation. The SAR image can

then be obtained from the general expression (13) with A (x ,y ,t) = 0 and

F(x,y,t)F * (x',y',t')=S(x-x')&(y-y')F (KX-QT-f8t/2) F* (KX-K2T+fit/2).

- (6a)1

8(8x)5(5y)j F (KX-T )1 2 e ' (B1)

for short correlation times, x,- In this form, it is clear that a change of variables,

= X - v T, without a corresponding change for the difference variable, &x, is

appropriate and the T and St integrals can be done explicitly as in Section 3 (Case I),

with the simplification that Xj, = 0 and u. = 0. In particular the T integral is

fdT Res.,['(X'- (V. - V)T] Res[ (xo-V.T)]

exp - 2ikr R(v0 &)(X'.-. - vo)] } (B2)

which is the Fourier transform of a Gaussian function of T. The largest value of this

Fourier transform occurs for the transform variable

2krva& [(Va - ) -va(l -2vfv)] =0 , (B3)R0

i.e. for vf =v,/2.

The conclusion is that in order to get a clear image of the moving pattern of

reflectivity, sharp focusing of the stationary scatterers must be abandoned. Moreover,

since the individual scatterers are not moving, there is no velocity shift due to their

motion relative to the slightly "rotating" radar beam which scatters from them. Thus the

image blurs only because of the motion of the pattern and not from motion of the scatter-

ers. Thus the proper focus correction is vf = v /2.
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Appendix C: The Effect of the Bandwidth of the Bragg Spectrum

Harger [1985] has considered the case of an ensemble of Bragg waves travelling

entirely in the range direction, and obtained a optimal focus setting of v,, instead of the

v, /2 that we have obtained. In this appendix we show the relationship of his model with

our calculations.

We begin by considering a single Bragg wave. To keep things simple, we imagine

the big wave to be an azimuthally directed wave of reflectivity, and ignore A, U, and a.

From the first of Eqs. 20, we see that there is a relation between K, and x - va T, given

by the beam rotation. Thus, instead of choosing a finite look time, we can nearly

equivalently consider an infinite look time but a limited range of K, values of the Bragg

waves.

The radar return, integrated over y for a single x value is given by

Sk(XVat) 2  ]eiko(x-vt) + -io(vt)

R = C exp + iK I+ +-e x

(C1)

where C is a complex amplitude. The first exponential is the radar phase, and the second

is the x -dependent Bragg wave phase. The remaining factor gives the modulation by the

big wave; we assume a< <1, since it is proportional to the slope of the long wave in the

real problem. We have ignored harmonics of k0 . The total return is, ignoring Res1 ,

fRdx= C exp [iKxvat - iK:Ro]

+ - exp iKxvat +ikO(vat-vot) - k " J

+ -- ex iKx.v.t -iko(vatvt ) - i (KkO)'Ro ,(C2)

where uninteresting constants are lumped into C'. We now multiply by

exp -(xO - vat)2[ " (l -V /va)2+ (12]]

and integrate over time. The coefficient of (x0 - Vat ) 2 will appear as the complex

width of a gaussian in K. The expression for the complex width can be simplified

because, as is easily verified, the imaginary part is much larger than the real part pro-

vided that
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1 k, va_
2AT 2  Ro

We expand in the ratio of real to imaginary keeping only the first two terms. With this

approximation we obtain the result for the amplitude of the signal assignment to the pixel

located at x0 to be:

i R o .K 2 - _ _ - 2 Kvx -- -

F (Kx,ko,xo) =C"(K, ) egXeve 4 Te

+ i[ (.+.o(l-v.,v.) (4 K, v1+k(1v1 I (K +k0 (1-v*1.i) )

+ e L -,V/V) 2 e 2&t

o I -K.-kO(1-1v./v (K 4 , ( -vIv.) -2-

+ ate i(K1-kI-v./ X0 e 4 fk k0 -v 1 /V e K

(C4)

In this expression, Ak is given by,

2kr va AT
Akk= R0

This expression is complicated, but after some further manipulations the result will

simplify. However it is worth pointing out the dependence on the focal setting velocity

vf. If one examines the term proportional to a, it is evident that vf appears in two

places in the phase.

heseae - koK, l-

and

-Ro ( 1 -vt/va) 2

k- k° I I_(1 Vva )2
I I

For small vO Iva, the first phase vanishes for vf = v./2, and the second for vf = v$. Thus

the proper focus setting will depend on which of the two phases is dominant.
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As one can infer from the above equations, a range of K.'s will contribute to the

signal. The width of the range is given by Ak. In order to understand the origin of this

width, we refer to equation 20 and the subsequent text. The rotation of the beam as the

plane moves, leads to the above relationship between Ak and AT. ( Note: in the above

derivation, Ak appeared naturally as a result of the : integration). In order to accommo-

date the signal from all Bragg waves, we integrate the signal return over K,. The con-

stant C (K,) is proportional to the amplitude of the Bragg wave at wave number K,. For

future notational convenience we denote the integral over Bragg wave numbers by

amp (x 0 ) = fdK.FF (K,,k 0 ,x 0 )

the next step is to take the Fourier transform of the intensity at the wave number

k0(1 - v0 /va).

I (ko) = fdxoe-i ko-XO(l-vs/v) I amp (xO)12

= doe-i kOXO( 1 V/V.) dK, JdK'F (K,,kO,x 0 )F* (K,',ko,x 0 )

(C5)

The only terms that contribute to this particular Fourier component will be linear in

the modulation a.

The next assumption is that Bragg waves with different K. values have uncorrelated

values of the complex factor C"(K. ). In that case the only important (non-speckle)

terms in the product FF* are those which are diagonal in K,. Since F is proportional to

the Bragg wave amplitude, the product FF * will be proportional to the Bragg wave spec-

trum Sp (K, ). We now do the x0 integral to obtain the fourier transform of the inten-

sity,

I (ko) =constfdKSp (Kx )G (ko,Kx,vf)

where

G k , , f p K.,2  ko 2 ( 1 - 2vo/v= ) R 'koKx (vOIva - 2vf Iva)

I Ak2  2Ak 2  2k,

cosh ' k0 g, I -v_ R iRk 02F vj-]] (C6)
[ Ak 2  -a I 2k, I va Va

and we have dropped quadratic terms in vo/va and v /Iva.
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Harger [1985] has considered the case of an ensemble of Bragg waves travelling in
the range direction, i.e. k., = 0. To obtain the result we can imagine that Sp (K1 ) is a
delta function at a particular K,. Then we consider the absolute magnitude of G. The
term involving v0- 2v, appears in phase and thus does not contribute to the magnitude.
It is easy to verify that the maximum of the magnitude of G is obtained when v =vf.

However, normally there would be a spectrum of waves present and in fact the spectrum

is expected to be relatively constant in the range

-Ak<K 1 <Ak

In order to see the transition between a narrow spectrum and a broad spectrum we con-
sider a form for Sp (K 1 ) such that the transition can be easily seen.

Sp (K) =const e-xkc)/2"

with this form the spectrum, the integral over K can now be done. For simplicity let

kc =0. Then

I (ko) = cos[ (vf/v a - v,/va - 2v/Iva

R O'k o( Vva -2 vf/Iva) 2Ak 2g.21
ex -16 ', (Ak' + j2 (C7)

As discussed above, the part dependent on 0ko 2 has vf -v., while the partkro

involving k1, which has become the part involving i on integration, has vo - 2yr.

For typical SAR parameters the argument of the cosine is very small. Consider first
the case of a narrow spectrum, then g2--40 and the maximum of I (k 0 ) is obtained when
vf = v.. Note however that this is a very flat maximum and the focus setting makes very
little difference. This corresponds to the case Harger [ 19851 analyzed.

Next consider the case of .L-- which means the spectrum does not vary much.
Then the second term in the cosine is much larger than the first and vf = vo /2 maximizes
the cosine term. The exponential is maximum when vf = v, /2 as well. The maximum of
the exponential is much sharper.
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The conclusion is that as long as the spectrum is reasonably flat over the region

-Ak < K < Ak, the proper focus setting is v, /2. If the spectrum of Bragg waves is

sufficiently narrow the proper setting is vo; however, the actual focus setting does not

matter much in the latter case.
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Appendix D: Decorrelation time for SAR reflections from Bragg Waves.

The waves intermediate in wavelength between the Bragg waves and the waves

being imaged cause a degradation of resolution. There are alternative interpretations of

the reason for the degradation that lead to the same final expression. It is important to

emphasize that the following discussion refers to the same mechanism, but different

interpretations.

One way of understanding image degradation is to consider the random position

shifts due to the orbital velocities of the intermediate waves which are typically traveling

in many different directions. This gives a blurring of the image. Another way of under-

standing the same phenomena is to consider the phase coherence time of Bragg waves.

By phase coherence time we mean the time it takes for different patches of Bragg waves

to change their relative phases significantly. Phase coherence of the scatterers is neces-

sary since phase information is used to infer position. The patches of Bragg waves in dif-

ferent locations are advected by currents due to the orbital velocities of the intermediate

waves. These currents Doppler shift the frequencies of the Bragg waves and since the

currents have a random character, the phases of all the Bragg waves will evolve dif-

ferently, leading to incoherence and image degradation. This appendix will derive an

expression for the degradation.

In Eq. (18) a function D ( t ) was introduced that contained a decorrelation time for

Bragg waves due to damping, wind and modulation by intermediate size waves. It was

perhaps premature to introduce the part relating to modulation by intermediate size

waves. If we proceed to Eq. (23) and extract the terms linear in the intermediate wave

variables and ignore the last term we have to consider the expression

exp[2i k, [sinSou, (-,T) -cos8u. (74,T) ]S] • (DI)

This phase can be seen in Equations (22)-(24) of the main text, where we were thinking

specifically of the long waves and could replace ' by R. For the intermediate waves we

can treat i as a randomizing influence on the phase of the signal. Taking an ensemble

average over these intermediate wave advection currents and assuming they are Gaussian

random variables yields an explicit form for the decorrelation function D (8t) intro-

duced in Equation (18).

D (St) = <exp[2i k , (sin Souy - cosS0 u. )St ] >

=exp < sin So u2 + cos2 So u2 > ( 2  ]. (D2)

The correlation time, c, can be read off as
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't,7 24(2kf sjfl8<Uy> + Cos 80<u ] (D3

This result is similar to that of Alpers et al. as reported in Shemdin et al. (1986).

Evaluation of <uj2 > using several forms of the wave spectrum indicates the spec-
trum shape is not critical. The simplest to evaluate uses a wave height spectrum

s (q+)d 2d [Bf (oa)/q4] d2ij (D41

2nt

with B =2x10 - 3 and ff (ct)da= i where tis the angle ofq. Then, for example,
0

<Uz2> = f (gq ) [Bf (a)/q4] q dq d(x

q max

= Bg f dq/q 2 . (D5)
q min

The integral in (D5) is insensitive to the upper limit and choosing q = g /v" 2, where vW

is the wind speed, produces

<uW =Bv 2 (D6)

The range advection term <uy 2 > depends on the wind direction but is generally a little
smaller than < u. 2 >. A reasonable estimate of T, is then

tc1 =42(2kr)qB'vw =v,/(0.3m) . (7)

For a 3m/sec wind speed, rc = 0.1 sec. We have tried other shapes and get c 's within

the range 0.05-0.15 sec for TOWARD conditions.

At higher wind speeds the cutoff wavelength we have used, XcU = 2xv2/g,

becomes longer than the pixel size and one might think that the velocity shift from the
advection should no longer be treated as a randomizing influence on the phase of the sig-
nal from one pixel, but rather as an actual velocity shift for that pixel. That is correct for
the position space image. On the other hand, the velocity shift of individual pixels by the
intermediate waves can again be thought of as a randomizing process on the phase of the
long wave signal, e.g. it is random from one crest of the long wave to the next. Averag-
ing over this randomizing effect on the shift, X,, in Equation (38) leads to an expression

which is equivalent to that obtained by including all intermediate waves independent of

pixel size, in the expression for Tc . Thus as far as the long wave spectrum is concerned,

it is unnecessary to divide the advection effects into decorrelation by the shorter inter-

mediate waves and velocity shifting by the longer intermediate waves. Both effects con-

tribute in the same way, thereby avoiding the necessity of deciding where to put the
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dividing line between them. They are really the same mechanism with a different
interpretation.
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